A Robust Collaborative Filtering Recommendation Algorithm Based on Multidimensional Trust Model
نویسندگان
چکیده
Collaborative filtering is one of the widely used technologies in the e-commerce recommender systems. It can predict the interests of a user based on the rating information of many other users. But the traditional collaborative filtering recommendation algorithm has the problems such as lower recommendation precision and weaker robustness. To solve these problems, in this paper we present a robust collaborative filtering recommendation algorithm based on multidimensional trust model. Firstly, according to the rating information of users, a multidimensional trust model is proposed. It measures the credibility of user’s ratings from the following three aspects: the reliability of item recommendation, the rating similarity and the user’s trustworthiness. Secondly, the computational model of trust and the traditional collaborative filtering approach are combined to select the reliable neighbor set and generate recommendation for the target user. Finally, the performances of the novel algorithm with others are compared from both sides of recommendation precision and robustness using MovieLens dataset. Compared with the existing algorithms, the proposed algorithm not only improves the quality of neighbor selection and the recommendation precision, but also has better robustness.
منابع مشابه
A Robust Collaborative Recommendation Algorithm Incorporating Trustworthy Neighborhood Model
The conventional collaborative recommendation algorithms are quite vulnerable to user profile injection attacks. To solve this problem, in this paper we propose a robust collaborative recommendation algorithm incorporating trustworthy neighborhood model. Firstly, we present a method to calculate the users’ degree of suspicion based on the user-item ratings data using the theory of entropy and t...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملA Novel Trust Computation Method Based on User Ratings to Improve the Recommendation
Today, the trust has turned into one of the most beneficial solutions to improve recommender systems, especially in the collaborative filtering method. However, trust statements suffer from a number of shortcomings, including the trust statements sparsity, users' inability to express explicit trust for other users in most of the existing applications, etc. Thus to overcome these problems, this ...
متن کاملIntelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کاملQoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering
Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JSW
دوره 8 شماره
صفحات -
تاریخ انتشار 2013